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1 EXECUTIVE SUMMARY 

The primary goal of the CONDUCTOR project is to create, integrate, and showcase cutting-edge, 

sophisticated traffic and fleet management solutions to enhance the efficient and optimal 

transportation of passengers and goods. To achieve this objective, advanced Machine Learning (ML) 

and Artificial Intelligence (AI) technologies will be applied, and the resultant technologies will be 

developed and integrated and validated through three specific use cases (UCs). The work presented 

in this report focuses on Tasks 3.1 and 3.2 and aims to present the data harmonization and data 

fusion concepts design and implementation of the CONDUCTOR project. 

The main objective of the deliverable was to develop methodologies related to data harmonization 

and data fusion process, including: (1) common data model design, (2) data space architecture, (3) 

big data architecture (4) data fusion methodologies for five different implementation scenarios. 

FIWARE's smart data models were chosen as the foundation for harmonization within 

CONDUCTOR, aligning with the project goals. Chapter 3 highlights the utilization of a common data 

model to structure the Context Broker, managing the entire context information lifecycle. This 

includes updates, queries, registrations, and subscriptions, fostering semantic-level data integration 

and management. The adoption of common information models, coupled with data space design 

and big data architecture deployment, ensures seamless application integration and facilitates 

efficient exploration of CCAM services. Harmonized data models enhance sharing and exchange of 

information among project components. 

Five significant developments were identified in the context of CONDUCTOR's data fusion tasks, 

each relevant for designing new traffic management strategies. These include characterizing 

delivery trips and estimating delivery demand, identifying unusual traffic patterns during large-scale 

events, creating a framework for smartphone-based data analytics, specifying FleetPy-Aimsun 

coupling, and developing space-time context and heterogeneous data fusion. The report provides 

detailed methodologies and initial implementation steps for each, to be applied and refined in the 

diverse use cases as the project progresses. 

Although each development is initially framed within a specific UC, a "from-particular-to-general" 

approach is employed during definition and implementation. This allows for the formulation of general 

methodologies applicable across multiple UCs, enhancing flexibility and scalability. The report offers 

an initial version of methods, designs, and specifications for final data integration, subject to updates, 

testing, and validation in the designated UCs and pilot setups. The refined versions will be reported 

in the final reporting phase. 

 

Keywords: Common Information Model, CCAM Data Space, Data harmonization, Data Fusion 
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2 INTRODUCTION 

This report, as a result of Tasks 3.1 and 3.2 of the project, presents the data harmonization and data 

fusion concepts design and implementation, that are being developed in the context of the 

CONDUCTOR project and will be used in the use cases. These objectives are clustered into two 

main groups:  

1. Data harmonization objectives: 

• O1.1.: To design and develop a framework for reference data model implementation. The 

important part of the objective is to use the domain-specific smart data models, representing 

standardized domain uniform data models, supported by FIWARE, IUDX, TM Forum, OASC 

and others. In the process, the available smart data models are investigated and assessed 

for their suitability for representing data entities within CONDUCTOR. The basic methodology 

for the mapping of data entities should be represented and specified with Proof of Concept 

(PoC) in the final integration implementation. 

• O1.2: To design and implement big data architecture for data space, to allow the efficient 

execution of machine learning algorithms and optimisation models for time-critical tasks. The 

design should include descriptions of the fundamental principles and structures underlying 

the big data architecture, including parallelization and distributed data processing and 

platform configuration. The design specifications should also provide an initial test of the main 

deployment concepts, such as container deployment on Kubernetes cluster, etc. The big data 

architecture specifications should provide conceptual schemas, selection and description of 

technologies and description of implementation scenario and configurations.  

• O1.3.: To design CCAM and traffic data space architecture that will enable: various data 

integration patterns (pub/sub), data transformation (maintaining common data model for the 

domain of CONDUCTOR project), data management procedures (such as Extract Transform 

Load, ETL) for various data categories and data security/data access mechanisms at various 

levels. For this purpose, specifications for the “Context Broker” are needed accompanied with 

appropriate technologies that will be selected, to enable the management of complex data 

pipelines and the common data model. 

 

2. Data Fusion Objectives: 

• O2.1.: To develop a data fusion methodology for characterization of last-mile parcel delivery 

trips and estimation of delivery demand from a wide variety of data sources (mobile network 

data (MND), e-commerce survey data, delivery data, etc.). The development allows the 

characterisation of the e-commerce users by their place of residence and different socio-

demographic features (such as age and gender), as well as the identification of the last-mile 

delivery trips based on mobility patterns extracted from MND. This identification is used to 

provide more detailed transport demand information segmented by mode and to develop 

coordination strategies between last-mile delivery and demand-responsive transport (DRT) 

for the Urban logistics UC (UC3) of the project. 

• O2.2.: To develop a framework for identifying unusual traffic patterns caused by large-scale 

events. Taking advantage of sensors and social networking platforms, unusual traffic patterns 

can be detected, and their development can be traced in real-time. To this end, data fusion, 

statistical learning and ML techniques are combined to fuse and extract new meaningful 

features from different data sources and predict traffic events. The information generated by 
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the tool can provide first responders with the right information to monitor traffic conditions 

and create situational awareness, supporting the decision-making process. 

• O2.3.: To develop a framework for actionable smartphone-based data analytics. The 

framework will establish a generic detailed modelling plan to address issues of data 

processing and analysis for stream data coming from smartphone sensors, that creates 

actionable information out of raw data. This plan is based on five main steps: sensing, data 

processing, data modelling, model exploitation, and adaptation. The information obtained 

with this process can be used for driving analytics, mobility analytics, and parking analytics. 

• O2.4.: To develop a methodology for FleetPy—Aimsun coupling. FleetPy, a Python-based 

DRT simulation tool, does not have an integrated traffic micro-simulation functionality. The 

aim of this coupling is to fill in this gap to improve FleetPy simulation potential by using the 

capabilities of the Aimsun Next simulation tool. The bridge allows the consideration of a more 

realistic traffic simulation in the FleetPy control decisions which replicates the unexpected 

delays that DRT might face in real traffic. 

• O2.5.: To design space-time context for heterogeneous data. The purpose of the objective is 

to develop a methodology and implementation design for the embedding of heterogeneous 

data into a graph representation, that enables augmentation and contextualization of data 

source beyond basic single data representation. More importantly, the specifications address 

the methods for feature vectors embedding into common space-time context representation. 

The final specifications should include methods for feature extraction and data retrieval from 

space-time context graph. 

 

The objectives represented are a structured description of main knowledge, functionalities and 

capabilities to be targeted at and were used as guidelines for research and development work under 

T3.1. and T3.2. The results are represented in the Chapter 3 and Chapter 4. 

 

2.1 Outline of the Deliverable 

This deliverable begins with an executive summary, offering a brief overview of the CONDUCTOR 

project's objectives, goals, and a description of the deliverable's contents. Progressing to the 

introduction chapter, the background establishes the context by explaining overarching challenges. 

The subsequent section on objectives and contributions defines the document's purpose and 

potential impact, followed by a detailed outline of the deliverable's structure and content.  

The main content of the deliverable is consolidated under two chapter, namely: (a) Chapter 3 Data 

space design and harmonization, (b) Chapter 4 Data Fusion.  

Chapter 3 describes the data harmonization part of CONDUCTOR project, with the architecture of 

the data space and the introduction of the “context broker” as the main agent for managing data 

process flow. The basic architecture of processing heterogeneous data is represented and methods 

for semantic data harmonization are introduced, including an example of harmonization of three 

basic data sources as a Proof of Concept (PoC). In the continuation, the section presents the big 

data architecture and the appropriate technologies to implement the designed data space concept, 

including configurations and final testing with ML models deployment capabilities. The architecture 

presented includes the complete deployment pipeline, including continuous integration and 

continuous development mechanisms. The big data architecture is finally benchmarked for 

performance with three basic ML algorithms, offering results on performance evaluation. 
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Chapter 4 presents the data fusion algorithms needed for the development of the CONDUCTOR 

decision support models and tools. The chapter describes data fusion methods and implementation 

in five main strategies that are employed in CONDUCTOR, namely: (a) Characterisation of delivery 

trips and estimation of delivery demand from mobile network, surveys and logistic operation data, 

(b) Identification of unusual traffic patterns caused by large-scale events, (c) Framework for 

actionable smartphone-based data analytics, (d) FleetPy—Aimsun coupling specification, (e) Space-

time context and heterogeneous data fusion. Each of the strategies is described in the context of UC 

implementation, including definition of problem, data portfolio used and data fusion methods applied. 

The data fusion methods were applied, tested and evaluated to provide estimations for final 

implementation. 

The document concludes with summarization of key challenges, important findings and expected 

results in further development for both: data harmonization and data fusion part of the deliverable. 
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3 DATA SPACE DESIGN AND HARMONIZATION 

This chapter outlines the efforts made to establish the CONDUCTOR data space, which will serve 

as the data architecture for the project's models and solutions. The objective of the data space is to 

provide a comprehensive solution that encompasses data sovereignty and control, interoperability, 

and trustworthiness. To meet the requirements of the CONDUCTOR project, a dual approach has 

been identified:  

1. Leveraging tools from the Fiware ecosystem, a publish/subscribe framework is being 

implemented to unify data providers and consumers. This approach will primarily be utilized for open 

data and real-time data streaming applications.  

2. IDSA connectors are being realised for the transfer of data, enabling secure and effective 

communication and exchange in the developed data space. Note, that for the purposes of 

CONDUCTOR the Minimum Viable Dataspace (MVD) is being implemented, with additional features 

to be added in the future if necessary.  

The section is divided into three parts: (i) a description of the chosen data harmonisation approach, 

(ii) the specification of the proposed MVD architecture, and (iii) an explanation of the experimentation 

conducted to evaluate various big-data approaches for integration into the project's data architecture. 

3.1 Data Harmonization 

3.1.1 Concept and Approach 

Data harmonisation entails the adoption of common information models for representing schemas 

and semantics for data to be used by applications. CONDUCTOR develops a variety of tools and 

algorithms to support the investigation of CCAM services and therefore a harmonised representation 

of data models is necessary to facilitate seamless integration of applications. A list of the identified 

data sources for the different CONDUCTOR use cases can be seen in Appendix A. As can be seen, 

data sources for the representation of transport supply and demand, as well as weather, air quality, 

land use and telecom data are among those available for the project.  

Based on the available data sources, FIWARE’s smart data models1 were selected as the basis for 

harmonisation within CONDUCTOR. This specific initiative is a collaboration program, led by 

FIWARE, IUDX, TM Forum, OASC and others. The aim is the adoption of a reference architecture 

and uniform data models for interoperable and integrated smart solutions and systems. The use of 

FIWARE's smart data models for data harmonisation in CONDUCTOR is based on their suitability 

and alignment with the project's goals. By adopting common information models for data 

representation, CONDUCTOR can ensure seamless integration of applications and enable efficient 

investigation of CCAM services. The harmonised representation of data models allows easier 

sharing and exchange of information among different components of the project. 

 

 

 

1 https://www.fiware.org/smart-data-

models/#:~:text=A%20smart%20data%20model%20includes,examples%20of%20the%20payloads%20for 
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3.1.2 Data Harmonisation Developments 

During the initial phase of the project, we conducted an investigation into the available smart data 

models and assessed their suitability for representing data entities within CONDUCTOR. In this 

regard, we identified the following data models as appropriate for the purpose of harmonization: 

• ItemFlowObserved 2 : This data model can effectively capture readings obtained from 
infrastructure sensors such as loop detectors. These readings encompass various traffic 
engineering parameters including average speed, flow, occupancy, and others. 

• WeatherObserved 3 : This data model represents observations of weather conditions at 
specific locations and times. 

To demonstrate the harmonization process, we have selected the following CONDUCTOR data 

sources: 

• Attica Traffic Data 
• DARS Traffic Data 
• weatherapi Weather Data 

3.1.3 Attica Traffic Data 

The mapping of the data entities for the harmonisation of the Attica region traffic data4 can be seen 

in Figure 1. 

 

Figure 1 Data entities mapping for Attica region traffic data 

The corresponding data model entity record in JSON format following the NGSI v2 information model 

can be seen below. 

{ 

    "id": "FlowObserved:Attica_MS116", 

    "type": "ItemFlowObserved", 

    "address": { 

      "addressCountry": "GR", 

      "addressLocality": "ΑΤΤΙΚΗ", 

      "streetAddress": "Λ. ΚΗΦΙΣΟΥ" 

    }, 

    "alternateName": "ΚΥΡΙΟΣ ΔΡΟΜΟΣ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΠΕΙΡΑΙΑ ΜΕΤΑ ΤΗ ΡΑΜΠΑ 

ΕΞΟΔΟΥ ΤΗΣ Λ. ΚΗΦΙΣΟΥ ΠΡΟΣ ΑΓ. ΙΩ. ΡΕΝΤΗ", 

 

 

 

2 https://github.com/smart-data-models/dataModel.Transportation/tree/master/ItemFlowObserved 

3 https://github.com/smart-data-models/dataModel.Weather/blob/master/WeatherObserved/doc/spec.md 

4 https://www.data.gov.gr/datasets/road_traffic_attica/ 
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    "averageSpeed": 99.9284046692607, 

    "dateObserved": "2021-10-24T00:00:00Z", 

    "dateObservedFrom": "2021-10-24T00:00:00Z", 

    "dateObservedTo": "2021-10-25T00:00:00Z", 

    "intensity": 51400, 

    "refDevice": "MS116" 

} 

3.1.4 DARS Traffic Data 

The mapping of the data entities for the harmonisation of the DARS traffic data5 (Slovenian road 

network) can be seen in Figure 2. 

 

Figure 2 Data entities mapping for DARS traffic data 

Similarly, the corresponding data model entity record in JSON format following the NGSI v2 

information model can be seen below. 

{ 

    "id": "FlowObserved:DARS_1001-11", 

    "type": "ItemFlowObserved", 

    "address": { 

      "addressCountry": "SI", 

      "addressRegion": "ACB Ljubljana"       

    }, 

    "location": { 

        "coordinates": [ 

 

 

 

5 https://www.dars.si 
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            14.570367, 

            46.06786             

        ], 

        "type": "Point" 

    }, 

    "alternateName": "R Zadobrova(MB-LJsev)", 

    "averageSpeed": 82, 

    "dateObserved": "2023-12-14T12:35:00Z", 

    "dateObservedFrom": "2023-12-14T12:30:00Z", 

    "dateObservedTo": "2023-12-14T12:35:00Z", 

    "intensity": 612, 

    "averageHeadwayTime": 5.9, 

    "occupancy": 7.9, 

    "refDevice": "1001-11" 

} 

3.1.5 weatherapi Weather Data 

The mapping of the data entities for the harmonisation of the weather data from the weatherapi.com 

service can be seen in Figure 3. 

 

Figure 3 Data entities mapping for the weatherapi weather data 

The corresponding data model entity record in JSON format following the NGSI v2 information model 

can be seen below. 

{ 
    "id": "Greece-WeatherObserved-Athens-2023-12-14T14:03:00+02:00", 
    "type": "WeatherObserved", 
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    "address": { 
      "addressLocality": "Athens", 
      "addressRegion": "Athens", 
      "addressCountry": "GR" 
    },     
    "dateObserved": "2023-12-14T14:03:00+02:00", 
    "location": { 
      "type": "Point", 
      "coordinates": [ 
        23.72, 
        37.98 
      ] 
    }, 
    "atmosphericPressure": 1011.0, 
    "windSpeed": 3.6, 
    "windDirection": 10, 
    "temperature": 18.0, 
    "feelLikesTemperature": 18.0, 
    "precipitation": 0.0, 
    "uVIndexMax": 4.0,     
    "relativeHumidity": 77,     
    "visibility": "excellent",  
    "gustSpeed": 12.3} 

 

3.2 CONDUCTOR Minimum Viable Dataspace 

3.2.1 Minimum Viable Dataspace Architecture 

The overall architecture of CONDUCTOR’s MVD can be seen in Figure 4 below.  

 

Figure 4 MVD Architecture 

The overall solution is composed of two components, (i) the data management platform, which 

realises a Fireware compliant context management framework, (ii) IDSA data adaptors, which 

facilitate secure transfer of data between entities based on established agreements (contracts) 

between the interested parties. 
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3.2.2 Data Management Platform 

At the heart of the approach resides the ORION context broker, which offers holistic management of 

context information (data entities) including insertion, updating, querying and deletion. In addition, 

the context broker facilitates a publish/subscribe paradigm where systems can receive context 

information as soon as it is published on the broker. For the purposes of CONDUCTOR an example 

of the interaction of different systems with the context broker can be visualised in Figure 5. ORION 

allows the issuing of different commands (using conventional REST API commands) for managing 

context information. These are briefly described below: 

• POST: for creating a new entity on the broker. The payload can include the data model entity 

records shown in sections 3.1.3 - 3.1.5.  

• PUT: can be used for replacing all the attributes of a given entity, removing the previously 

existing ones. The payload includes a list of the new attributes. 

• PATCH: can be used for updating the value of an entity’s attribute if the attribute already 

exists. The payload includes the attributes that need to be updated.  

• DELETE: can be used for deleting an entity. 

• GET: can be used for retrieving context from the broker.  

The first four commands are being utilised by context producers, while the last command is primarily 

being adopted by context consumers. 

 

Figure 5 ORION context broker interactions 

The remaining elements of the architecture are briefly described below: 

• External Data Sources: These sources provide raw data that serves as the foundation for 

CONDUCTOR's insights and decision-making processes. As stated earlier in the chapter, 

the data sources available to the project can be found in Appendix A. 

• APPS (Producers/Consumers): Applications within the CONDUCTOR ecosystem act as 

both producers and consumers of data. They are responsible for generating valuable insights 

and utilizing information from other sources. The developed adaptors will support the smart 

data models described in section 3.1.1 above. More information regarding the adopted 

publish/subscribe approach is presented in section 3.2.2 below. 
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• Authentication and Authorisation: For the realisation of secure access to the resources 

managed by the data space, FIWARE’s Keyrock6 and Wilma7 components will be utilised. 

Keyrock will provide identity management functionalities, allowing APPS developers to 

register their solutions before publishing or accessing protected data. Wilma is a Policy 

Enforcement Point (PEP) proxy that will act as intermediary between the developed APPS 

and the Context Broker, adding an additional protection layer to the architecture. These 

components will be setup during the next phase of the project and once the CONDUCTOR’s 

IT infrastructure is fully operational.  

• Persisting Data [Cygnus]: Cygnus8 is a FIWARE component based upon Apache’s Flume 

Source=>Channel=>Sink paradigm and is responsible for persisting data, ensuring its 

durability and availability for further analysis. The process involves a source, a channel, and 

a sink, forming a comprehensive data pipeline. As in the case of Keyrock and Wilma, Cygnus 

will be deployed on the project’s IT infrastructure to offer data persistency for the context data 

produced to the Orion Context Broker.  

• Persistent Data Stores: Cygnus offers data persistence to various third-party tools such as 

MongoDB, Hive, PostgreSQL, and Kafka. For the purposes of CONDUCTOR MongoDB9 will 

form the primary persistent storage medium, while requirements for additional tools will be 

investigated in the second phase of the project. 

3.2.3 Publish/Subscribe Model 

In addition to the ‘pull’ interface (using GET commands), data consumers can retrieve data from the 

broker by ‘subscribing10’ to specific entities. This can be achieved through a subscription request that 

defines the entities of interest. Once a subscription has been verified, the subscribed application will 

receive asynchronous notifications every time the relevant entities have been updated. The following 

subscription request examples demonstrate how an application can receive data from a single traffic 

sensor, or from all traffic sensors available. 

Payload of request for subscribing to data entities related to sensor with id 

FlowObserved:Attica_MS116. 

{ 
    "description": "A subscription to get traffic data from sensor with 

id FlowObserved:Attica_MS116", 

    "subject": { 

      "entities": [ 

        { 

          "id": "FlowObserved:Attica_MS116" 

        } 

      ], 

      "condition": { 

 

 

 

6 https://fiware-idm.readthedocs.io/en/latest/ 

7 https://github.com/ging/fiware-pep-proxy 

8 https://fiware-cygnus.readthedocs.io/en/latest/ 

9 https://www.mongodb.com 

10 https://fiware-orion.readthedocs.io/en/master/user/walkthrough_apiv2.html 
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        "attrs": [ 

        ] 

      } 

    }, 

    "notification": { 

      "http": { 

        "url": "http://localhost:8080/traffic" 

      }, 

      "attrs": [ 

      ] 

    }, 

    "expires": "2030-12-31T00:00:00.00Z" 

  } 

Payload of request for subscribing to data entities related to all traffic data sensors available. 

{ 
    "description": "A subscription to get traffic data from all sensors 

available", 

    "subject": { 

      "entities": [ 

        { 

          "type": "ItemFlowObserved" 

        } 

      ], 

      "condition": { 

        "attrs": [ 

        ] 

      } 

    }, 

    "notification": { 

      "http": { 

        "url": "http://localhost:8080/traffic" 

      }, 

      "attrs": [ 

      ] 

    }, 

    "expires": "2030-12-31T00:00:00.00Z" 

  } 

3.2.4 IDSA Connectors 

In the architecture of the CONDUCTOR data space, a crucial component is the implementation of 

IDSA connectors for secure and efficient data exchange. These connectors, specifically the data 

connectors sourced from the Eclipse open github repository11 play a pivotal role in our system.  

The Eclipse data connectors are designed to be compliant with the rigorous standards set by IDSA 

for secure data exchange. These connectors facilitate the integration of disparate data sources by 

providing a uniform interface for data transfer, ensuring interoperability and compliance with data 

 

 

 

11 https://github.com/eclipse-edc/MinimumViableDataspace/tree/main 
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sovereignty principles. This is particularly significant in environments where diverse data sets are 

involved, as it ensures seamless and secure data flow across different platforms and systems.  

Our application of these connectors in the CONDUCTOR data space is aimed at enhancing the data 

exchange processes, aligning with the broader objectives of the project. By leveraging the 

capabilities of these connectors, we are able to ensure that data exchange within our architecture is 

not only efficient but also aligns with the high standards of security, compliance, and interoperability 

advocated by IDSA. The implementation of these connectors signifies a step forward in achieving a 

robust and scalable data architecture that can support the complex demands of the CONDUCTOR 

project.  

In addition to implementing IDSA connectors from Eclipse in our architecture, we have taken a step 

further by containerizing these connectors, so they can be deployed through Docker. This approach 

involves encapsulating the connectors within containers, thereby enhancing their scalability, 

portability, and ease of deployment across different computing environments. Containerization also 

contributes to a more modular architecture, allowing for greater flexibility and efficiency in managing 

and updating the connectors.  

To fully explore the potential of these connectors, we have conducted mock data exchanges within 

our data space. These exercises are designed to simulate real-world data exchange scenarios, 

allowing us to assess the performance, reliability, and security of the connectors in a controlled 

environment. By running these mock exchanges, we gained valuable insights into how the 

connectors handle various types of data, respond to different load conditions, and integrate with 

other components of our data architecture. This hands-on experimentation is crucial for fine-tuning 

the connectors and ensuring that they meet the specific needs and challenges of the CONDUCTOR 

project. 

3.3 Big Data Architecture and Design 

The big-data architecture within the CONDUCTOR project aims to provide a framework of tools 

which will allow the efficient execution of machine learning algorithms and optimisation models for 

time-critical tasks. This section outlines the fundamental principles and structures underlying the 

design of the big data architecture, which serves as the backbone for data processing and analytics 

in the context of fleet and traffic management. 

3.3.1 Architecture Overview 

The foundation of the CONDUCTOR project's data processing lies in a container-based 

infrastructure as described in D4.1. Deploying and scaling containerized applications ensures 

flexibility and efficient resource management for seamless data processing across the project (Figure 

6). 

• Container-based Infrastructure: Serving as the cornerstone of the project's data 
processing, a container-based architecture provides a scalable and flexible infrastructure, 
which can be orchestrated through the deployment and management of containerized 
applications for adaptability to varying workloads. 

• Containerization Strategy: Containerization plays a crucial role in maintaining consistency 
and isolating processes within the project. Containers enhance agility by encapsulating 
applications and their dependencies, enabling efficient deployment across diverse 
environments. 

•  
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Figure 6 Representation of three apps running on three different containers 

3.3.2 Distributed Data Processing with Kubernetes and Apache Spark 

Kubernetes is increasingly being utilized for the development of container-based web applications 

on physical computers within Platform-as-a-Service (PaaS) clouds. It enables the scalability of 

applications through dynamic workload changes. Kubernetes follows a master-slave architecture, as 

depicted in Figure 7. The master node is responsible for managing the Kubernetes system and 

serves as the entry point for all administrative tasks. It coordinates the execution of tasks where the 

actual services are performed. 

 

Figure 7 Kubernetes Architecture 

In Kubernetes, pods, rather than containers, serve as the smallest units of computation that run on 

slave nodes. A pod can encapsulate one or multiple containers and is assigned a unique IP address. 

Each container within a pod shares the network namespace, including the IP address and network 

ports. Communication between pods running on different physical computers is facilitated by Kube-

proxy, a component of Kubernetes. To maintain flexibility and reliability, pods are typically deployed 

with a CPU demand of one core or less, allowing for flexible deployment across various nodes. 

Spark can also utilize Kubernetes as its cluster manager, similar to other administrators. In 

Kubernetes, all Spark drivers and executors run within pods and are scheduled by Kubernetes' native 
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scheduler. Upon submitting a Spark application to a Kubernetes cluster, a Spark driver is created 

and initially runs within a pod. The driver then creates Spark executors, which also run within pods, 

to connect to them and execute the application's code. Once the application is completed, the 

executor pods are terminated and cleaned, while the driver pod retains the log files and remains in 

a "completed" state in the Kubernetes API until it is eventually "garbage collected" or manually 

deleted (Zhu et al., 2020). 

Central to the Big Data architecture is Apache Spark, a powerful tool for distributed data processing. 

Spark's capabilities enable handling large-scale datasets efficiently, enabling parallel processing and 

laying the groundwork for fusion and analysis within the project. 

• It is chosen for its capability to handle large-scale datasets through distributed processing. 
Spark‘s architecture supports parallel computation, allowing for efficient and rapid analysis 
of diverse data sources. 

• It seamlessly integrates with other CONDUCTOR components. It acts as the backbone for 
parallel processing, facilitating data fusion and analysis across various modules, ensuring a 
cohesive and interoperable ecosystem. 

3.3.3 Deployment Configurations 

This section describes the setups employed for our experimental endeavours in distributed 

computing utilizing Kubernetes and Apache Spark. These configurations encompass various 

infrastructure strategies, each possessing its own distinct attributes and trade-offs. The selection of 

these formats is of utmost importance as it significantly impacts the performance, scalability, and 

portability of Apache Spark applications, and thus the overall CONDUCTOR big-data architecture. 

Our experimental work encompasses three distinct configurations, each representing a different 

technological layer. These are: 

• Single Spark Cluster node 

• Two Spark Cluster nodes (Figure 8) 

• Four Spark Cluster nodes (Figure 9) 

 

Figure 8 Two node spark cluster: Execution flow 
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Figure 9 Four node spark cluster: Execution flow 

3.3.4 Experimental Results 

In this section, we will thoroughly examine the selected machine learning algorithms and their 

implementation within the Apache Spark framework. These algorithms have been chosen based on 

their relevance to identifying phenomena and their diversity in the field of machine learning. From 

many available, we selected the following algorithms: Multiclass Logistic Regression, Decision Tree, 

and Naive Bayes. The rationale behind this selection is to facilitate a comprehensive comparison of 

different configurations, taking into consideration the unique characteristics of each algorithm. 

Multiclass Logistic Regression: Multiclass logistic regression is used when the prediction of more 

than two classes is necessary. In multiclass logistic regression, the goal is to predict the probability 

of an input belonging to each class and this machine learning model is suitable for incident detection 

applications. Apache Spark offers a flexible implementation of Multiclass Logistic Regression 

through the LogisticRegression class. This algorithm is known for its simplicity and interoperability, 

which can be crucial in understanding incident detection results. 

Decision Tree: The Decision Tree algorithm is a classic machine learning algorithm that creates a 

tree-like model of decisions and their possible connections. It is widely used in various domains, 

including incident detection. Apache Spark provides an implementation of the Decision Tree 

Classifier algorithm. Decision Trees are known for their diversity and ease of interpretation, which 

can be crucial in comprehending detection results. 

Naive Bayes Classifier: The Naive Bayes algorithm is a probabilistic algorithm based on Bayes' 

theorem. It is particularly useful for text classification and categorical data, but it can also be applied 

to incident detection tasks that involve categorical outputs (i.e. vehicle collision, vehicle breakdown, 

etc.). Apache Spark enables the implementation of Naive Bayes through the NaiveBayes class. 

Despite its simplicity and the assumption of feature independence, Naive Bayes often demonstrates 

impressive performance in practice and can be efficient for handling large data sets. 



   

 | V1.0| Final   Page 24 | 67 

The results from the execution of the algorithms can be seen at the table below (Table 1). As it can 

be seen the performance of the algorithms improves with the increase of the cores used as part of 

the architecture.  

Table 1 Big-data architecture performance experimental results 

Algorithms   Configuration / Setup    Performance (KPIs) 

   Time  %Cpu  

(us) 

Memory 

Multiclass  

Logistic regression 

One node spark cluster  137.73 s 55.9  438.67 MiB 

  Two node spark cluster  88.40 s 55.4 259.61 MiB 

  Four node spark cluster  62.89 s 52.4 169.90 MiB 

Decision tree One node spark cluster  549.47 s 61.9  1011.34 MiB 

  Two node spark cluster  344.128 s 64.4  598.15 MiB 

  Four node spark cluster 249.46 s 61.1 391.46 MiB 

Naive Bayes One node spark cluster  415.95 s 88.5  761.92 MiB 

  Two node spark cluster  263.25 s 84.5 451.05 MiB 

  Four node spark cluster  183.96 s 90.8 295.20 MiB 
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4 DATA FUSION 

This section presents the data fusion algorithms needed for the development of the CONDUCTOR 

decision support models and tools. The objective of these algorithms is to transform harmonised 

data (filled by different sources) into medium and high-level features to be used by the decision 

support models, including, among other, pattern discovery from heterogeneous data and predictive 

modelling methods for mapping among data of various granularities. The developed algorithms will 

be used either to feed the development of new mobility and traffic models or to represent observed 

behaviours to be modelled in the CONDUCTOR UCs. 

4.1 Concept and Approach 

The fusion of diverse data mobility-related information allows the reconstruction of traffic and mobility 

patterns, essential in crafting effective traffic and fleet management strategies. This fusion involves 

harnessing data from a set of sources, such as GPS devices, mobile phone records, surveys, etc. 

Each of these sources contributes complementary information, enriching the overall understanding 

of mobility dynamics. 

The reconstructed patterns serve as a foundational basis for designing intelligent traffic and fleet 

management strategies. By leveraging insights gained from the analysis of varied data sets, 

transportation systems can be optimized, routes can be streamlined, and congestion mitigated. 

It is noteworthy that different combinations of data sources yield equivalent patterns and mobility 

indicators, highlighting the flexibility and adaptability of this approach. 

In the context of CONDUCTOR, the following data fusion developments and analysis have been 

identified by Nommon, INTRA, NTUA, TUM, and JSI, respectively, as relevant for the design of new 

traffic management strategies: 

• Characterisation of delivery trips and estimation of delivery demand from mobile network, 

surveys and logistics operation data. 

• Identification of unusual traffic patterns caused by large-scale events. 

• Framework for actionable smartphone-based data analytics. 

• FleetPy—Aimsun coupling specification. 

• Space-time context and heterogeneous data fusion. 

Each development is framed within one of the CONDUCTOR UCs. However, even though the data 

fusion algorithms have been identified based on the UCs needs, during the definition and 

implementation phases, a from-particular-to-general approach is being followed, in which each 

development allows the definition of general methodologies that can be extrapolated, whenever 

other data sources with similar characteristics are available. 

4.2 Data Fusion Developments 

Next, the data fusion developments are described in detail. 
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4.2.1 Characterisation of Delivery Trips and Estimation of Delivery Demand  

4.2.1.1 Introduction 

Nommon is developing an algorithm for the identification, characterisation and prediction of parcel 

delivery demand to be used in the Urban logistics use case (UC3) of the project. This UC investigates 

solutions aimed at the optimal integration of urban freight distribution with DRT, in order to reduce 

last-mile parcel delivery-related traffic. The goal is to leverage the excess capacity of DRT vehicles 

during periods of lower demand for the last-mile delivery of freights compatible with passenger 

transport. For that, both the parcel delivery demand and the DRT demand need to be estimated, in 

order to identify the valley hours in the DRT demand and coordinate both services to define optimal 

routes in those periods. 

This algorithm is being implemented in two phases, each providing an incremental level of detail: 

• phase 1: estimation of the delivery demand from surveys. In this phase, the delivery demand 

data provided by the Spanish National Statistics Institute aggregated at Spanish province 

level is disaggregated into smaller administrative levels, such as district or census tract. 

• phase 2: identification and characterisation of delivery trips. In this phase, a longitudinal 

behavioural analysis on mobility patterns extracted from MND, enriched with e-commerce 

delivery data, is performed to identify the delivery trips and characterise the delivery flows. 

Next, the data needed and the methodology for the implementation of each phase is described. 

4.2.1.2 Data Used 

The data needed for the identification of delivery trips and prediction of delivery demand are the 

following (see Deliverable D1.2 (CONDUCTOR Consortium, 2023) for more details on the data 

sources): 

• data needed for phase 1: 

- Spanish census data, provided by the Spanish National Statistics Institute (INE). This 

dataset contains population data, characterised by age group and gender at Spain 

census tract level. 

- Survey on equipment and use of information and communication technologies in 

households, provided by the INE. This survey contains information about the general use 

of information and communication technologies, in particular, about the use of e-

commerce for private reasons of the Spanish residents, characterised by purpose and 

sociodemographic characteristics of the population. 

• data needed for phase 2: 

- MND, provided by one of the largest telecom companies in Spain. This data source 

contains mobile phone Call Detail Records (CDRs) and probes data. 

- E-commerce delivery data, provided by Citylogin. Citylogin is a last-mile delivery logistic 

company located in Madrid that has shared their delivery data, previously anonymised, 

with Nommon under private agreement for the context of this project. The data provided 

include information of goods travel demand, including main delivery stops and delivery 

itineraries. 

- land use and points of interest (POIs). The land use information is provided by the 

Spanish National Geographic Information Centre and contains geometry of each land use 
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type per Autonomous Community of Spain. The points of interest data are generated by 

Nommon for this development based on the location of logistic and delivery hubs. 

4.2.1.3 Methodology for Phase 1 

The objective of phase 1 is to provide information about the volume of e-commerce demand 

generated in a region based on its sociodemographic characteristics, i.e., its population distribution 

by gender, age, income level, household size, etc. For that, Nommon has defined a methodology to 

disaggregate the available e-commerce delivery demand of a large region to smaller subregions. 

This methodology is based on the hypothesis that: i) sociodemographic characteristics of the 

population are good explanatory variables of the delivery demand, and ii) that the relation between 

the sociodemographic characteristics and the observed demand patterns in big regions is preserved 

in smaller subregions, i.e., people from the same sociodemographic group behave similarly 

regardless of their place of residence (within the same region). 

The methodology defined is depicted in Figure 10 and consist in the following steps: 

1. Delivery demand distribution per each sociodemographic group, defined as a combination of 

sociodemographic characteristic (age, gender, income level, or household size), is extracted 

from the analysis of the e-commerce demand (delivery demand) provided by the survey on 

equipment and use of information and communication technologies in households.  

2. Delivery demand of each sociodemographic group is distributed to each subregion according 

to the distribution of the different sociodemographic groups in each subregion. This 

distribution is carried out in the following manner:  

a. the percentage of each group living in each subregion is computed, creating a 

probability distribution of the delivery demand in each subregion.  

b. the probability distribution is applied to the buyers of each group one by one (to 

preserve an integer number of buyers) to assign them to a subregion.  

c. the probability distribution is updated each time a buyer is assigned to a subregion by 

subtracting the buyer from the population of the sociodemographic group it belongs 

to, both at region and subregion levels. This ensures that the process does not assign 

more buyers than available population in each group to each region.  

To illustrate this dynamic probabilistic assignment, let us suppose that buyer 𝑏  belongs to 
sociodemographic group 𝑔, the total population of that group in the region is 𝑝𝑔, and there are 𝑛 

subregions, 𝑟1, … , 𝑟𝑛, with population of that group 𝑑1, … , 𝑑𝑛, respectively. The probability distribution 

of group 𝑔 before the assignment is: 

prob(𝑔) =  (
𝑑1

𝑝𝑔
, … ,

𝑑𝑛

𝑝𝑔
). 

Now, let us assume that buyer 𝑏 is assigned to the subregion 𝑟𝑘 , then, the updated probability 

distribution of group 𝑔 (after the assignment) is: 

prob̂(𝑔) =  (
𝑑1

𝑝𝑔−1
, … ,

𝑑𝑘−1

𝑝𝑔−1
, … ,

𝑑𝑛

𝑝𝑔−1
). 

This process yields a disaggregation of the delivery demand in each subregion considered and a 

characterisation of the delivery demand in terms of the sociodemographic characteristics of the 

population. 

This methodology is being tested and validated in the Madrid region. Nevertheless, with the from-

particular-to-general philosophy in mind, this methodology can be applied to any region in which 

demand delivery information characterised per sociodemographic group is available, as long as both 
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the considered region and the sociodemographic characteristics meet the starting hypothesis. 

Furthermore, it is not limited to the context of delivery demand, but can be applied to any case in 

which it is required to disaggregate information provided at a regional level that depends on the 

sociodemographic characteristics of its population (or any other kinds of characteristics that meets 

the starting hypothesis in the region). 

 

Figure 10 Workflow for the estimation of delivery demand. 

4.2.1.4 Methodology for Phase 2 

The objective of phase 2 is to deepen the characterization of the parcel delivery demand of a zone, 

providing not only its demand volume, but also identifying delivery trips and flows (including typical 

travel times and distances), characterising last-mile delivery-related traffic. 

Figure 11 shows the methodology defined for the identification of delivery trips from MND. This 

methodology is based on a pattern transfer from the delivery trips data to the MND data. For that, 

the e-commerce delivery data is used to extract mobility patterns based on trip features observed in 

delivery trips: 

• average travel distance in the day: this variable is expected to be high for 4 to 5 days a week 

and normal for the other days (in which the professional is resting), 

• average travel distance between deliveries: this information allows the distinction between 

stops (deliveries) and breaks, 

• radius of gyration from the logistic centre: this variable is expected to be smaller than a 

fraction of the diameter of the region analysed, as we are considering last-mile delivery (i.e., 

short-distance transport), 

• average number of deliveries, 

• average travel time in the day: this variable is expected to be high for 4 to 5 days a week and 

normal for the other days (in which the professional is resting), 
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• average travel time between deliveries: this information allows the distinction between stops 

(deliveries) and breaks, 

• frequency of appearance in logistic centres, 

• average working hours: this variable is expected to be between 8 and 10 for 4 to 5 days a 

week. 

These patterns are crossed with the activity-travel diaries obtained from MND to identify those users 

whose activity-travel diaries match the obtained patterns. 

This methodology is calibrated and validated using the delivery demand data for Madrid provided by 

Citylogin (see Section 4.2.1.2).  

Once this development is finished, the capability of the historical delivery trips data for demand 

prediction will be also analysed. For that, historical delivery trips will be identified using this approach, 

and the delivery demand of the next days will be predicted based on the demand of the previous 

days. 

Following the from-particular-to-general approach, this methodology can be applied to any case in 

which it is required to identify delivery trips from geolocated data (such as MND or GPS data), 

provided that a sample of delivery trips data is available to extract representative mobility patterns 

of professional drivers of the region. 

 

Figure 11 Workflow for the identification of delivery trips. 

4.2.1.5 Technical Implementation 

At this stage of the project, only phase 1 has been implemented. For that, the Survey on Equipment 

and Use of Information and Communication Technologies in Households of 2023 provided by the 

INE is being used. This survey contains information about the use of e-commerce for private 



   

 | V1.0| Final   Page 30 | 67 

reasons. In particular, it provides the number of times a user has made an online purchase in the 

last 3 months, and the kind of products bought, distinguishing between physical products (clothes, 

shoes, jewellery, toys, sports articles, music, books or films in physical format, computers, mobile 

phones, food, furniture, etc.) and non-physical products (tickets, online videogames, apps, etc.). This 

distinction is quite useful, as only e-commerce of physical products is needed to analyse the delivery 

demand.  

The questions of the survey refer to the last 3 months (from the moment it is answered), and it was 

carried out between May and August 2023, hence, the answers refer to the period from February to 

August 2023, all of them regular months without any relevant festivity in Spain (such as Christmas). 

So, it can be assumed that the online shops correspond to three regular months of the year, and by 

dividing them by 3, we obtain the online shops for a regular month of the year. 

The respondents are characterised by their age, gender, nationality, province of residence, level of 

studies, household structure, household net income, employment situation, and marital status.  

As mentioned in Section 4.2.1.3, the methodology for phase 1 is being validated for the Madrid 

region, with a population of 6,750,336 inhabitants in 2022 (the latest available data). In this case, the 

demand for the region was disaggregated for each of the 246 districts. 

According to the survey, 3,205,371 persons used e-commerce to buy physical products at least once 

during three regular months (almost half of the inhabitants), with a total of 14,846,565 purchases. 

The first step for the demand disaggregation is the definition of the sociodemographic groups to be 

used. For this first iteration of the implementation only age and gender were considered for 

disaggregation, as only average values of net income and household sizes information are available 

at subregion level. Hence the sociodemographic groups are defined as all the possible combinations 

of the following categories of the available age and gender characteristics: 

• Gender: 2 groups: male/female. 

• Age: 9 groups: 15-24, 25-34, 35-44, 45-54, 55-64, 65-74, 75-84, 85-100. 

The gender categories are the same as they appear in the Census, while for the age categories an 

aggregation has been made to reduce the number of groups, hence easing the results interpretation. 

When performing this aggregation it is important to ensure that they effectively characterise 

population groups with different behavioural patterns, i.e., people belonging to the same group 

effectively behave in a similar way, and people of different groups have different online shopping 

patterns. Moreover, the groups must be commensurable with the minimum aggregation provided in 

the census data, which have a granularity of 5 years. The group for 0-14 years old is removed since 

in the survey participants age goes between 16 and 100 years (people younger than 16 years old 

are not allowed to buy online, as they are not allowed to have a credit/debit card).  

To compute the distribution of each sociodemographic group, we use the census data provided by 

the INE for the year 2022, as the one for 2023 is not available until the year is finished. However, 

this is not a problem since census information does not change significantly between two regular 

consecutive years. Next, the census data are aggregated to extract the distribution of the different 

groups in Madrid. This is depicted in Figure 12.  
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Figure 12. Population of the Madrid region per sociodemographic group. 

Then, the distribution of buyers and deliveries per sociodemographic group is extracted from the 

survey. Figure 13 shows this distribution in the Madrid region, according to the survey of 2023. The 

first row depicts the distribution of the total number of deliveries and buyers per sociodemographic 

group, and the second row shows the ratio of deliveries and buyers with respect to the total 

population of each group. As can be seen, the absolute values and the ratios follow the same 

distribution except for the age group between 25 and 35 years old, whose members are the ones 

that make the most use of e-commerce, in proportion. Also, up to 54 years old women are more 

likely to shop online for physical products than men, while from 55 onwards, the trend is reversed. 
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Figure 13 Distribution of deliveries (left column) and buyers (right column) per sociodemographic 

group. The first row shows absolute values and the second row, the ratio with respect of the total 

population of each group. 

As can be seen, the population and the buyers follow a similar distribution per sociodemographic 

group, as expected. Then, the population per district and group is divided by the total population of 

the group in the region. This proportion distribution is used as seed probability distribution to 

dynamically assign the buyers one by one to a district, according to their sociodemographic group. 

As an example, Figure 14 depicts the initial probability distribution among districts of women and 

men of age groups 15-24 and 65-74. As can be seen, the central area accounts for most of the 

population. 
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Figure 14 Population distribution in the Madrid region of women and men of age groups 15-24 and 

65-74. 

The next section shows the results of the demand assignment to district. 

4.2.1.6 Results 

Figure 15 and Figure 16 show the distribution of buyers and deliveries among the districts of the 

Madrid region per sociodemographic group. As can be seen, both distributions are similar, as there 

is a strong relation between the number of buyers and the number of deliveries. 

As expected, the results show that the population group and population density highly determine the 

number of orders a person makes.  



   

 | V1.0| Final   Page 34 | 67 

 

Figure 15 Distribution of buyers per sociodemographic group. 
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Figure 16 Distribution of deliveries per sociodemographic group. 
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4.2.1.7 Next steps 

As next steps of the implementation of phase 1, the physical products considered in the survey will 

be grouped to separate the ones compatible with passenger transport from the ones not compatible. 

The demand of the compatible ones will be disaggregated and analysed, as this is the one needed 

for CONDUCTOR UC3. 

Also, it will be studied how other characteristics can be included in the disaggregation, especially 

household net income and household size. For that, additional data would be needed. 

Finally, the deliveries for an average month of previous years will be computed (the e-commerce 

INE survey is available from 2003) and considered as time series to analyse the evolution of the 

delivery demand and the effect of the COVID-19 crisis in the e-commerce. The capability of the 

historical data for demand prediction of a regular month of the next year will be also analysed. 

4.2.2 Identification of Unusual Traffic Patterns Caused by Large-scale Events 

4.2.2.1 Introduction 

In recent years, event detection using public data has received a great deal of attention from 

researchers and practitioners. In particular, the widespread availability of social media data (e.g., 

Twitter data) resulted in a significant increase in studies that are using machine learning algorithms 

and natural language processing techniques to extract knowledge from micro texts in social networks 

and identify events of interest (e.g., Belcastro et al., 2021; Ferreira da Silva et al., 2022; 

Ganeshkumar et al., 2022). In addition to this, a special emphasis started to be placed on geotagged 

social media, where the main goal is to mine social media data streams and recognize events in a 

specific local or global area of interest (e.g., Afyouni et al., 2022; Hodorog et al., 2022; Vitanza et al., 

2023; Afyouni et al., 2023).  

In the context of the CONDUCTOR project, INTRA has proposed a traffic event detection mechanism 

based on machine learning and geo-visualization to identify traffic events and trace the development 

of these events in real-time. Specifically, taking advantage of sensors and social networking 

platforms, the traffic event detection tool aims to provide first responders with the right information 

to create situational awareness. This information can be a list of metrics helping first responders to 

identify extreme events (e.g., traffic accidents, natural disasters, social events, unusual happenings, 

etc.) in the road network and monitor traffic conditions. Providing first responders with the right 

information at the right time will help them to take appropriate actions reasonably and facilitate 

decision-making under risk and uncertainty. Therefore, the aforementioned metrics can be seen as 

early warning signals for monitoring and improving traffic conditions in road networks. 

4.2.2.2 Methodology & Technical Implementation 

Despite the advantages of social networking platforms, social media data heterogeneity and big data 

size pose challenges in the process of identifying information about events from the raw data. Most 

of this data is unstructured and includes text in different formats. How to capture reliable, valuable 

and accurate information in massive data is one of the most significant research topics nowadays 

(Rashinkar & Krushnasamv, 2017). Specifically, big data is accompanied by difficulties and 

challenges (e.g., data imperfection, data inconsistency, data confliction, data alignment/correlation, 

etc.) in a data-driven service provision due to its “5Vs”, namely volume, velocity, variety, veracity and 

value (Meng et al., 2020). Considering the data heterogeneity obtained on sensors and social 

networking platforms, we propose a four-level fusion pipeline combining data fusion concepts 

(Mitchell, 2012) with machine learning (Khaleghi et al., 2013) to address data fusion challenges 

effectively concerning criteria such as efficiency, quality, stability, robustness and extensibility. The 
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suggested fusion pipeline depicts the main aspects of the methodology we are going to follow for 

designing and implementing the traffic event detection mechanism mentioned in Section 4.2.2.1.   

The four-level fusion pipeline consists of four main modules (one at each level): data acquisition for 

storing and data retrieval purposes, data fusion for making data more accurate, information fusion 

for extracting significant features/predictors and decision/knowledge fusion for supporting decisions 

(see Figure 17). 

 

Figure 17 Three-level fusion pipeline. 

To begin with, SQL (e.g., PostgreSQL) and NoSQL (e.g., MongoDB) databases can be available for 

storing and managing structured transactional and relational datasets, as well as unstructured data, 

respectively. At this stage, we mostly focus on gathering data based on sensors used on the 

CONDUCTOR project, as well as social networking platforms that allow data retrieval through APIs. 

The first objective of the data fusion module is to create a pool of techniques for addressing big data 

challenges effectively and ensuring a data value chain that allows someone to produce a cleaned, 

unbiased and accurate dataset for model development purposes. In this direction, data are explored 

in depth by providing an analyst with visualization techniques and data quality measures that can 

help him/her identify any issues or bad data. The second objective of the data fusion module is to 

provide efficient computational intelligence approaches to identify traffic-related data and extract 

traffic events. Natural language processing practices, clustering techniques, as well as anomaly 

detection algorithms will be investigated to pre-process structured/unstructured data, investigate 

similarities and identify outliers/abnormal behaviours in the traffic-related data.   

The information fusion module contains advanced statistical learning approaches for extracting new 

features based on available variables, allowing us to further explore datasets and find hidden 

patterns. In this direction, feature weighting techniques will be investigated for training machine 

learning algorithms with high predictive accuracy. This module will be very useful for developing 

additional models that can support the traffic event detection mechanism. For instance, demand 

forecasting in specific paths of a road network could be additional data to be considered by the traffic 

event detection mechanism.  

The decision/knowledge fusion module supports the decision-making process by providing someone 

with trained ML models for detecting and predicting traffic events, as well as monitoring traffic 
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conditions. In the context of this module, a special emphasis is put on trustworthy and explainable 

ML, explaining ML outcomes to users in a language close to a human expert. The role of 

explanations in data quality and ML outcomes is very crucial especially when it is needed to address 

the issues of transparency (Gunning et al., 2019; Bertossi & Geerts, 2020). As a result, with this 

module, we support a hybrid-augmented human-in-the-loop process where computational 

intelligence (data science practices) and human intelligence (expert knowledge) are combined under 

seven aspects: (a) the ability to perceive rich and complex information from traffic-related data, (b) 

the ability to discover causal information from observational data, (c) the ability to learn in a particular 

context of interest, (d) the ability to abstract, (e) the ability to create new meanings/concepts, (f) the 

ability to reason for decision-making, and (g) the ability to explain the prediction/decision outcome. 

In this direction, insightful graphs and visualizations will be suggested. 

4.2.2.3 Results 

This section aims at presenting the main models developed for supporting 

data/information/knowledge fusion concepts. To begin with, data fusion module includes an 

automatic anomaly detection algorithm based on tree-based approach, namely Isolation Forest (Liu 

et al., 2008). In particular, the Isolation Forest model randomly selects a feature (variable) from the 

dataset and then randomly selects a split value between the maximum and minimum values of the 

feature (variable). In this direction, it is feasible to isolate and calculate the isolation path for every 

sample in the dataset. The Isolation Forest computes two metrics, a binary anomaly indicator where 

1 means that an anomaly/outlier identified and 0 otherwise, as well as an anomaly score belonging 

to the interval [-1,1]. A value from 0 to 1 indicates an anomaly, whereas a value less than 0 and near 

to -1 indicates that no anomaly/outlier exists. 

As an illustrative example, we used road traffic data of the region of Attica, Greece, that are available 

at https://data.gov.gr/datasets/road_traffic_attica/.  The dataset consists of the following variables: 

• deviceid: the id of the sensor. 

• countedcars: the number of cars counted.  

• appprocesstime: a timestamp. 

• road_name: the name of the road. 

• road_info: more details for the road. 

• average_speed: an average speed detected. 

In the context of the information fusion level some feature engineering tasks took place. Specifically, 

according to the timestamp, the name of the day within a week can be detected, whereas according 

to the time, different time zones can be created (e.g., early morning, morning, early afternoon, etc.). 

Moreover, as the combination of “deviceid”, “road_name” and “road_info”, is unique, we keep only 

the “deviceid” variable in the dataset. After applying a feature engineering (i.e., create new variables 

considering existing ones), the new dataset consists of the following features (variables): 

• deviceid: the id of the sensor. 

• countedcars: the number of cars counted.  

• average_speed: an average speed detected. 

• day_name: the name of the day within a week. 

• time_zone: the time zone within a day (i.e., early morning, morning, early afternoon, 

afternoon, early night, night) 

https://data.gov.gr/datasets/road_traffic_attica/
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The dataset consists of 66999 rows, of which 53599 rows used for training the Isolation Forest model, 

whereas 13400 rows used for test purposes. It is worth mentioning that all categorical variables were 

quantified using a Label Encoder. 

Considering training dataset, the following figures (Figure 18) depict: 

I. A 3D graph (on the left) using the t-distributed stochastic neighbour embedding method 

(Hinton & Roweis, 2002; van der Maaten & Hinton, 2008) for visualizing the four-dimensional 

data by giving each data point a location in a three-dimensional map. The method models 

each four-dimensional object by a three-dimensional point in such a way that similar objects 

are modelled by nearby points and dissimilar objects by distant points with high probability. 

II. A 2D graph (on the right) using the Uniform Manifold Approximation and Projection (UMAP) 

dimension reduction technique (McInnes & Healy, 2018) that can be used for visualization 

similarly to t-SNE, but also for general non-linear dimension reduction.  

 

  

Figure 18 3D t-SNE and 2D UMAP plots. 

Moreover, focusing on computed anomaly scores, the following figures (Figure 19) depict the 

distribution of anomaly scores for training and test datasets, respectively. 

  

Figure 19 Distribution of anomaly scores for training (left) and test (right) datasets. 
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It is worth mentioning that an emphasis should be placed on the anomalies/outliers detected. 

Therefore, focusing on outliers, several patterns can be identified. For example, the following figures 

(Figure 20) depict the distribution of anomaly scores for the outliers identified in the test set, as well 

as a line plot comparing number of cars and average speed focusing on a specific day within a week 

for a month period. Observing the second graph, an emphasis should be put on cases where the 

average speed is too low, indicating that the road is overloaded. 

  

Figure 20 Distribution of anomaly scores of outliers for the test set (left) and line plot (right) 

comparing number of vehicles and average speed. 

A deeper analysis is also feasible. For instance, focusing on specific day of a week (e.g., Friday) and 

a specific sensor (e.g., MS110), we can visualize the number of cars counted and average speed 

for each time zone within a day (Figure 21). 

  

Figure 21 Number of cars per time zone for Friday (left) and average speed per time zone for Friday 

(right). 

As can be observed, in most cases, as the number of cars increased the average speed is 

decreasing. These cases are of special interest in our example since they depict outliers directly 

affecting the road network conditions. 

Moreover, in the context of the data fusion level, several APIs have been also investigated especially 

for gathering information regarding scheduled events, e.g., https://www.eventbrite.com/platform/api. 

https://www.eventbrite.com/platform/api
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Combining the timestamp of road traffic data and the timestamp of scheduled events we can further 

extend the dataset by adding a new column regarding the number of scheduled events that will take 

place in a specific geo-location. In this direction, we introduce a human-in-the-loop hybrid augmented 

model based on the Mamdani Fuzzy Inference System (MFIS) (Niemiec, 2017; Spolaor et al., 2020) 

to compute a traffic load risk value belonging to the interval [0, 1]. The MFIS model is part of the 

knowledge/decision fusion level and aims at combining anomaly scores of outliers and number of 

scheduled events to calculate an estimation of the risk associated with the traffic load. 

MFIS has been developed composing of fuzzy rules with linguistic inputs and outputs so as to obtain 

rule-based decisions. Inputs reflect main decision variables per event and/or alert (in terms of 

anomaly score) defined by experts. Values of these variables are continuously monitored for 

constructing a decision support pipeline that will facilitate experts to make decisions under 

uncertainty and risk. When the inputs are given, there are six steps to compute the output of the 

MFIS (see Figure 22). 

 

Figure 22 Mamdani Fuzzy Inference Approach. 

As far as the inputs are concerned, computed anomaly scores and number of scheduled events 

identified in the data fusion level are associated with decision variables to be monitored through 

CONDUCTOR components. These decision variables are used for building rules and measuring 

traffic load risk. Typically, a fuzzy rule base consists of a set of fuzzy IF-THEN rules depicting the 

core of the fuzzy inference system in the sense that other components such membership functions 

are designed to implement these rules in a reasonable, realistic, and efficient manner. These IF-

THEN rules are utilized by the fuzzy inference system to determine a mapping from fuzzy sets in the 

input universe of discourse 𝑈 ⊂ 𝑅𝑛 to fuzzy sets in the output universe of discourse 𝑉 ⊂ 𝑅, based 

on fuzzy logic principles. The fuzzy IF-THEN rules are given by the following equation: 

𝑅(𝜈) = 𝐼𝐹 𝑥1 𝑖𝑠 𝐹1
𝜈  …  𝑥𝑛 𝑖𝑠 𝐹𝑛

𝜈 , 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐺𝜈 , 

where 𝐹𝑗
𝜈 , 𝐺𝜈, 𝑗 = 1,… , 𝑛 are fuzzy sets in 𝑈𝑗 ⊂ 𝑅, respectively. In addition to this, 𝑥 = [𝑥1, … , 𝑥𝑛]

𝑇 ∈

𝑈 and 𝑦 ∈ 𝑉 are input and output linguistic variables of the fuzzy inference system which belongs to 

the input and output universes, respectively. 𝜈 represents the number of rules in the fuzzy rule base. 

Furthermore, fuzzy membership function is used to convert the crisp input provided to the fuzzy 

inference system. Formally, a membership function for a fuzzy set A on the universe of discourse 

𝑥 ∈ 𝑈 is defined as 𝜇𝐴: 𝑥 → [0, 1], where each element of 𝑥 is mapped to a value between 0 and 1. 

This value is called membership value or degree of membership, quantifying thus the grade of 
membership of the variable 𝑥𝑗 ∈ 𝑥, 𝑗 = 1,… , 𝑛 to the fuzzy set A. Namely, 𝑥  is the universal set, 

whereas A is the fuzzy set derived from 𝑥.  

In the context of the proposed fuzzy-based solution approach, the triangular membership function is 

used to model anomaly scores and number of schedules events, respectively. The triangular 

Determine a set of fuzzy 
rules

Fuzzify the inputs using an 
input membership 

function

Combine the fuzzified 
inputs according to the 

fuzzy rules to  establish a 
rule strength

Find the consequence of 
the rule by combining the 

rule strength and the 
output membership 

function

Combine the 
consequences to get an 

output distribution

Defuzzify the output 
distribution
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membership function which fuzzifies the input can be defined by three parameters: a, b and c where 

a and c defines the base, whereas b defines the height of the triangle (see Figure 23). 

 

Figure 23 Triangular Membership Function. 

X-axis represents the input from the process, whereas y-axis represents corresponding fuzzy value. 

Analytically, if 𝑥𝑗 = 𝑏, then it is having full membership in the given set, that is 𝜇(𝑥𝑗) = 1, 𝑖𝑓 𝑥𝑗 = 𝑏, 𝑗 =

1,… , 𝑛. Additionally, if input is less than a or greater than c, then it does not belong to fuzzy set at 

all, and its membership value will be 0, that is 𝜇(𝑥𝑗) = 0, 𝑖𝑓 𝑥𝑗 < 𝑎 𝑜𝑟 𝑥𝑗 > 𝑐, 𝑗 = 1,… , 𝑛. If now 𝑥𝑗, 𝑗 =

1,… , 𝑛 is between a and b, its membership value varies from 0 to 1. If it is near to a, its membership 

value is close to 0, and if its membership value is near to b, its membership value gets close to 1: 

𝜇(𝑥𝑗) =
𝑥𝑗−𝑎

𝑏−𝑎
, 𝑎 ≤ 𝑥𝑗 ≤ 𝑏. Finally, if 𝑥𝑗 , 𝑗 = 1,… , 𝑛 is between b and c, its membership value varies 

from 0 to 1. Specifically, if variable is near to b, its membership value is close to 1, and if it is near to 

c, its membership value gets close to 0: 𝜇(𝑥𝑗) =
𝑐−𝑥𝑗

𝑐−𝑏
, 𝑏 ≤ 𝑥𝑗 ≤ 𝑐 . Mathematically, the triangular 

membership function is formulated as: 

𝜇(𝑥𝑗; 𝑎, 𝑏, 𝑐) =

{
 
 

 
 

0, 𝑥𝑗 ≤ 𝑎
𝑥𝑗 − 𝑎

𝑏 − 𝑎
, 𝑎 ≤ 𝑥𝑗 ≤ 𝑏

𝑐 − 𝑥𝑗

𝑐 − 𝑏
, 𝑏 ≤ 𝑥𝑗 ≤ 𝑐 

0, 𝑥𝑗 ≥ 𝑐

= max (𝑚𝑖𝑛 (
𝑥𝑗 − 𝑎

𝑏 − 𝑎
,
𝑐 − 𝑥𝑗

𝑐 − 𝑏
, 0 )) 

where a, b and c are defined by experts. 

In addition to this, let 𝜇𝛢  and 𝜇𝛣  be membership functions that define the fuzzy sets A and B, 

respectively on the universe X. To evaluate the disjunction of the rule inputs, an OR fuzzy operator 

(representing the union of fuzzy sets) is defined as follows: 

𝜇𝛢∪𝐵(𝑋) = max(𝜇𝛢(𝑋), 𝜇𝐵(𝑋)) 

Similarly, to evaluate the conjunction of the rule inputs, an AND fuzzy operator (representing the 

intersection of fuzzy sets) is defined as follows: 

𝜇𝛢∩𝐵(𝑋) = min(𝜇𝛢(𝑋), 𝜇𝐵(𝑋)) 

Finally, it is worth mentioning that the complement of a fuzzy set A is fuzzy set defined by the 

membership function: 

𝜇𝐴𝑐(𝑋) = 1 − 𝜇𝛢(𝑋) 

 

The following figure (Figure 24) depicts an illustrative example of the fuzzy rule-based inference 

approach. 
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Figure 24 Fuzzy Rule-based Inference Approach. 

Inputs of the fuzzy inference approach are two variables: the anomaly score associated with the 

Isolation Forest Model, and the number of scheduled events related to the Eventbrite API. Each input 

has a membership function that is defined using expert opinions. For instance, if the value of an 

anomaly score is between x-value and y-value then anomaly score has a low significance; if the 

value of anomaly score is greater than y-value then it has a high significance, etc. Considering the 

result obtained from each variable’s membership, an “outcome possibility” can be calculated via the 

membership function of the output variable (also, based on expert opinions). The “outcome 

possibility” depicts a set of possible fuzzy rules that are obtained via the combination of the variables’ 

significance to recognize the possible outcome when the membership function of the output variable 

is applied. An example of fuzzy rule is the following: if anomaly score is low, number of scheduled 

events is medium, then the “outcome possibility” is medium. Knowing the “outcome possibility”, we 

can provide other partners of the CONDUCTOR with new metrics that can facilitate the decision-

making process. 

Below, Figure 25 depicts an instance of Triangular Membership Functions related to input variables, 

whereas Figure 26 depicts an instance of the Triangular Membership Function regarding the output 

layer, as well as the distribution of traffic load risk on the test dataset.  
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Figure 25 Triangular Membership Functions – Input Layer. 

 
 

Figure 26 Triangular Membership Function for the Output Layer (left) and distribution of the traffic 

load risk (right) regarding the outliers/anomalies identified in the context of the test dataset. 

To conclude, we suggested the Isolation Forest Model for detecting outliers/anomalies in a road 

network, whereas taking advantage of public APIs such as the Eventbrite, we enriched the dataset 

with the number of scheduled events identified in a specific geo-location and time. Both models are 

the main components of the data fusion level. In addition to this, feature engineering tasks are also 

available in the context of the information fusion level. Finally, the knowledge/decision fusion level is 

enriched with a human-in-the-loop hybrid-augmented model based on the MIFS algorithm in which 

an expert is always part of the system, introducing in such a way the human cognitive capability into 

computational intelligence algorithms. Therefore, we combine expert intelligence (i.e., knowledge on 

the domain) with computational intelligence (i.e., computational power) to achieve high accuracy and 

reliability of proposed solutions. New metrics, such as the traffic load risk, obtained in the 

knowledge/decision fusion level can be useful for recommendation purposes. 
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4.2.3 Framework for Actionable Smartphone-based Data Analytics  

4.2.3.1 Introduction 

The advent of smartphones has revolutionised various aspects of our daily lives, including how we 

interact with technology and gather information. As versatile technological ecosystems, smartphones 

are increasingly instrumental in various domains, particularly in transportation analytics (Vlahogianni 

& Barmpounakis, 2017a). Their multifunctional capabilities, coupled with a broad spectrum of 

sensors, namely motion sensors (accelerometer, gyroscope, magnetometer), location sensors 

(GPS, network-based), and ambient sensors (light, microphone, proximity), make them invaluable 

tools for collecting and analysing transportation-related data.   

Having a closer look at the smartphone-based transport literature one can identify three main 

research domains: driving analytics and recommendations, mobility analytics and parking analytics. 

The combination of their processing capabilities and embedded sensors like accelerometers, GPS, 

and cameras, enables the continuous monitoring of driving behaviour and facilitate the identification 

of extreme driving patterns, such as speeding, harsh braking or acceleration, harsh cornering (left 

or right turn with high speed), and harsh lane changing (Handel et al., 2014; Johnson & Trivedi, 

2011; Mantouka & Vlahogianni, 2022; Predic & Stojanovic, 2015; Tselentis et al., 2017; Wahlström 

et al., 2015; White et al., 2011).   

The principal advantage of utilising smartphones in this context lies in their ability to provide a non-

intrusive environment for continuous data collection, offering a more sustainable and cost-effective 

solution compared to traditional instrumented vehicles. The embedded sensors in smartphones, like 

GNSS and IMU, are crucial in gathering granular data on driving behaviour, thereby contributing 

significantly to research in driving patterns and safety (Vlahogianni et al., 2013, 2014). The vast 

amounts of driving behaviour data collected by smartphones have been systematically used to mine 

driving patterns under typical conditions as well as major disturbances, such as COVID-19 

pandemics (Fafoutellis et al., 2023).  

Based on smartphone driving data analytics, many recommendation systems have emerged. A 

significant branch of this type of research focuses on Advanced Driving Assistance Systems (ADAS) 

through crowdsourced mobile phone data for improving efficiency and safety (Mantouka & 

Vlahogianni, 2022) other efforts focus on research on systems promoting, recommending eco-

driving and improving driving experience (Campolina et al., 2020; Fafoutellis et al., 2020; Gilman et 

al., 2015; Magaña & Organero, 2014). Eco-driving recommendations have been shown to improve 

driving behaviour, encouraging smoother and safer habits (Fafoutellis et al., 2023; Konstantinou et 

al., 2023). Further, research has centred around scoring methodologies, leaderboards, 

achievements, and competition that contribute to behaviour assessment and awareness (risk, 

operational, and economy scores) (Tselentis et al., 2019) and insurance policies based on driving 

behaviour, including Pay as You Drive and Pay How You Drive systems (Fafoutellis et al., 2022; 

Tselentis et al., 2017).  

Smartphones have also transformed mobility analytics. The evolution of methodological approaches 

in transport science, from traditional surveys to smartphone-based travel surveys (SBTS) (Servizi et 

al., 2021; Stopher & Greaves, 2007; Zhao, Pereira, et al., 2015), highlights the growing significance 

of smartphones in this domain. SBTS offers scalability, supports high-resolution datasets, and allows 

for a more detailed analysis of transport behaviour over extended periods. Moreover, methodological 

advancements have enabled the detection of frequently visited locations, identification of primary 

and secondary activities, and the construction of daily trip chains with capability for quantifying in 

detail teleworking and home-based activities and parking visits (Jay et al., 2022; Mourtakos et al., 

2023).   
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In the realm of parking analytics, smartphones are proving to be invaluable in reducing urban road 

congestion. By modelling the search duration for parking spaces using smartphone data, 

researchers have been able to identify key factors influencing parking search times (Krieg et al., 

2018; Mantouka et al., 2021; Salpietro et al., 2015). Studies have employed advanced techniques 

like parametric and semi-parametric survival models, random survival forests, and deep learning 

models to predict parking search duration estimation, using data enriched with variables like 

population density and land use. The detection of cruising (searching for parking) using GPS data 

from smartphones has also been a significant advancement. Studies have proposed new methods 

for detecting cruising and used machine learning algorithms to forecast cruising times in different 

urban areas, demonstrating the potential of smartphones in providing real-time, data-driven solutions 

to urban parking challenges.  

The pathway from designing naturalistic experiments using smartphones to evidence-based decision 

making based on crowdsourced information from smartphones is paved with a variety of challenges 

summarised in Table 2. 

Table 2 Existing challenges in analytics using smartphones and suggested countermeasures 

Challenge  Suggested countermeasures  Selected Citations  

Enhancing data 
representativeness through 
user engagement  

·Incentives and gamification aspects  
·Convince the crowd for the usefulness and 

importance of driving behaviour understanding 
in traffic and road safety  

·Advanced annotation tools to facilitate 
engagement and reporting   

·Reducing cost per user for data collection by 
leveraging novel lowcost technologies  

(Nitsche et al., 2014; Stopher & 
Greaves, 2007; Vlahogianni & 
Barmpounakis, 2017b; Yen et al., 2019)  

Ensuring for data availability 
and quality  

·Utilize low-power wireless networks  
·Upload data when a Wi-Fi connection is 

available  
·Share sensing data among multiple systems  
·Change sampling rates  
·Anonymity, pseudonymity, spatial cloaking  
·Data perturbation and aggregation  
·Feature selection (Filter, wrapped methods)  
·Anomaly detection techniques  
·Assess the necessary amount of data for 

capturing user behaviour  

(Christin, 2016; Etemad et al., 2018; J. 
Wang et al., 2018; Stavrakaki et al., 
2020; Thomas et al., 2018)  
   
   

Identify the context from the 
data  

·Data fusion  
·Filtering algorithms  
·Feature Engineering  
·Mode detection techniques  
·Trip chain detection  

(L. Wang et al., 2019; Thomas et al., 
2018; Wahlström et al., 2015; Zhao, 
Ghorpade, et al., 2015)   

Detect abnormal patterns   ·Machine learning approaches  
·Determine universal thresholds for each feature  

(Bejani & Ghatee, 2018)  

Modelling efficiency, transfer 
learning and explainability  

·Apply resampling techniques  
·Generate synthetic samples  
·Transfer learning  
·Additional features  
·Big data analysis instead of small experimental 

datasets  
·Outlier detection  
·xAI  

(Fafoutellis et al., 2022; Hu et al., 2018; 
Konstantinou et al., 2023; Maldonado & 
López, 2018; Roy et al., 2018)  
   

Raising awareness and 
changing attitudes  

·Incorporate ADAS schemes  
·Gamification  
·Impact assessment studies  

(Adamidis et al., 2020; Mantouka et al., 
2021; Tselentis et al., 2017; Vlahogianni 
& Barmpounakis, 2017a)  
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Real-time operation  ·Artificial Intelligence and edge computing  
·Prioritize tasks  
·Efficient memory management  

(Shukla et al., 2018)  

NTUA has established a generic detailed modelling plan to address issues of data processing and 

analysis for stream data coming from smartphone sensors, that creates actionable information out 

of raw data, contributing to various fields including driving analytics, mobility analytics, and parking 

analytics. This methodology will be applied in UC1-Athens. 

The framework proposed is described in the next section. 

4.2.3.2 Framework 

Establishing a detailed modelling plan to address issues of data processing and analysis for stream 

data coming from smartphone sensors involves several key stages with specific focus areas and 

characteristics (Laña et al., 2021). These stages pertain to sensing, pre-processing and modelling 

as well as model exploitation and adaptation. Along this pathway (Figure 27 raw data are 

transformed into actionable information, providing insights into the future, and allowing traffic 

engineers, organisations and businesses to extract value out of them. 

 

Figure 27 Modelling plan for transforming raw data to actionable information. 

1.Sensing  

The initial step of the modelling plan is about capturing a wide range of information from smartphone 

sensors and other sources. This includes traditional sources like vehicle and traffic monitoring and 

emerging sources such as social media. The primary challenges in this stage include managing the 

variety, volume and quality of data and selecting relevant data tailored to specific applications. The 

data sources are categorised as follows:  

• Roadside Sensing: Data on speed, traffic flow, and vehicle detection directly from the road.  

• In-vehicle Sensing: Data gathered from vehicles; used for fleet management, route 

optimization and behaviour analysis. 

• Cooperative Sensing: Crowdsourced information and social media. 
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• External Data Sources: Weather conditions, events and socio-economic indicators. 

• Structured/Static Data: Data from controlled sources like public transportation schedules and 

municipalities. 

These diverse data types are crucial for ITS applications expanding from traffic pattern analysis to 

the development of autonomous vehicles, however, the suitability of each data source varies 

depending on the specific application and effective development greatly depends on this early stage 

of careful and relevant data selection.  

2. Data Preprocessing  

The diversity of sensing sources might offer opportunities, but it also brings more than a handful of 

challenges to the table. The variations in the data regarding form, format, timing and accumulation 

rate, request some advanced preprocessing skills and tools before modelling can take place. While 

overlooked in numerous occasions, the preprocessing step is necessary for addressing issues like 

missing and/or corrupted data which can significantly skew model outcomes. For countering these 

problems, researchers employ various strategies for data imputation and correction ranging from 

just cleaning the data, to enriching the data for improved modelling, including data transformations 

for consistency and relevance, and selecting or engineering features that best fit the modelling 

needs. In imbalanced datasets, handling these class imbalances is also added in the mix.   

One preprocessing’s main aspect is data fusion, which despite its potential to create models with 

higher accuracy and explainability by combining multiple sources remains underexplored. However, 

it is the limited range of sources that ITS systems are relied on, that makes the exploration of data 

fusion approaches crucial for the actionability and effectiveness of the model itself.  

3. Data Modelling  

After collecting and preparing the data the next phase is to start building models that can extract 

insights through analysing. The purpose of these models may expand from clustering unsupervised 

data for enhanced value using classification or regression for pattern recognition in supervised data 

to forecasting future trends based on past data and simulating outputs for better understanding of 

input data processes. The model choice depends on objectives and combinations of various machine 

learning methods is common. The key is ensuring that models can generalise well to new, unseen 

data, balancing between accurate performance on current data and adaptability to new situations.  

The complexity met in traffic and transportation operations is usually treated with heterogeneous 

modelling approaches that aim to complement each other to improve accuracy. These may pertain 

to trying out many models and selecting the most appropriate one, or combining multiple models at 

the same time in order for a single output to be given. Incorporation of physical models, like those 

based on traffic theory, into data-driven models can also enhance accuracy and applicability. The 

process often involves optimization of model hyperparameters, sometimes using advanced 

techniques like Evolutionary Computation or Swarm Intelligence. However, as the complexity of the 

models increases, so does the challenge of optimising these parameters. It is important to note that 

with more complex models, achieving a completely deterministic and stable solution is rarely 

possible.  

4. Model Exploitation (Prescription)  

After modelling phase, the next step is the application of the developed model to real-world 

scenarios. This application stage – often neglected by research – is where the actual practicality and 

effectiveness of the model are tested as it involves defining and implementing actions based on the 

insights derived from the model. The application of a data-driven model can support various types 

of decision-making: strategic, tactical, or operational. For example, it might involve using the model's 

output for optimising traffic signal timings, altering public transportation routes, establishing special 
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lanes, or designing sustainable urban mobility plans. These applications can range from direct use 

of the model's output to employing it in a secondary modelling process for enhanced decision-

making, such as formulating the decision-making process as an optimization problem.  

A key aspect of this stage is the model's ability to adapt to real-time changes and support practical 

decision-making by ITS managers. Techniques such as Stochastic Model Predictive Control (SMPC) 

exemplify the integration of data-driven models with real-time control methods, efficiently handling 

complex systems with inherent uncertainties.  

5. Adaptation (Iterative Stage)  

In the proposed data processing workflow, model adaptation is a critical layer that extends across 

various stages of the modelling process. Since data-driven models are prone to uncertainties and 

changes in data patterns, they must be adaptable to maintain accuracy and relevance. This 

adaptation is essential due to potential changes like variations in traffic flow, new road openings, or 

unexpected events like public transportation strikes, which can significantly alter user behaviour and, 

consequently, the data models are based on.  

The adaptation process encompasses several stages:  

• Preprocessing Stage: Incorporating new data sources, addressing sensor failures, and 

enhancing data fusion and imputation methods. 

• Modelling Stage: Retraining models with new data, switching to alternative models, or 

modifying learning algorithms. 

• Prescription Stage: Adjusting data changes that affect model outputs. Could involve using 

online learning strategies to quickly adjust to concept drift in data streams.   

Adaptations can be either automatic, triggered by certain conditions, or manually introduced based 

on user inputs. This flexibility enhances the actionability of the model, making it more responsive to 

the needs of transportation network managers and other end-users. For instance, the introduction of 

new data sets or the detection of significant data drifts can be managed effectively to ensure the 

model continues to provide accurate and useful insights. 

4.2.4 Coupled Aimsun-FleetPy Simulation Data 

4.2.4.1 Introduction 

TUM is developing techniques for the efficient integration of urban logistics in DRT services (UC3). 

The freight and DRT demand data generated by Nommon will be  used as input for a co-simulation 

of Aimsun Next and FleetPy for the city of Madrid. The Madrid network will be provided by Aimsun.  

FleetPy is a Python-based DRT simulation tool developed by TUM. It does not have an integrated 

traffic microsimulation functionality; the travel times are mainly calculated using scaled free-flow 

travel times obtained from Open Street Map12 . Thus, it lacks a detailed consideration of other 

vehicles participating in the overall traffic. To fill this gap, FleetPy is coupled with Aimsun Next using 

the Python API. The fleet is controlled, i.e., vehicle schedules are computed, in FleetPy while vehicle 

movements are conducted within the Aimsun environment. The bridge allows the consideration of a 

 

 

 

12 https://www.openstreetmap.org 
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more realistic traffic simulation in the FleetPy control decisions which replicates the unexpected 

delays the DRT might face in real traffic.  

This section describes the main input data required for the co-simulation of UC3 as well as any 

further data manipulation done within the co-simulation. 

4.2.4.2 Data Used 

The main data inputs for UC3 are provided by Nommon and Aimsun and fused together in a co-

simulation of FleetPy and Aimsun Next. This will mainly consist of the following:   

• A calibrated Aimsun Next network for the Madrid use-case.  

• The origin-destination (OD) pair of the DRT passenger request and the time when the 

request is made.  

• The OD pair of the freight requests. If the Madrid use-case is assumed to serve freight 

requests from a depot, then only the destination (or origins for pickup) points of parcels are 

required.  

• Rest of the FleetPy simulation parameters to describe the fleet control algorithms used. 

4.2.4.3 Methodology 

For a successful co-simulation of Aimsun Next and FleetPy, some manipulation of the input data is 

required as described below.   

The first and the foremost is the mapping of freight and DRT demand data to the provided network. 

For simplicity, FleetPy generally limit the locations that can be visited by the DRT fleet to be located 

on the city network nodes. Thus, instead of the exact geographical locations, the closest node of the 

city network is used. The pickup or delivery of freight or passengers are, therefore, not considered 

to be in between network edges, rather, they are assumed to be exactly on network nodes.  

The second is in regard to the clustering of the freight requests. The study assumes same-day freight 

requests, which are significantly less time critical than the DRT passenger requests and can be 

delivered at any time within the same day. However, it is assumed that the DRT service should at 

least provide some time window (ranging in hours) within which the freight requests are served. 

Since it is assumed that the freight requests are mainly last-mile delivery requests known in advance 

unlike the DRT passenger requests, the freight requests need to be clustered in a way that the 

estimated freight delivery time windows are fulfilled. Such a clustering can be geographically, 

temporally or a combination of both. The main challenge faced in this regard is that the service 

quality of DRT passengers must not be compromised significantly. Therefore, this would require the 

clustering methods to also consider the DRT passengers’ data. Such a clustering of freight requests 

will be done in a preprocessing step. Figure 28 shows this process. 

The third data manipulation is regarding the traffic state data collected from the Aimsun Next 

simulation. To plan vehicle routes and assign vehicles to DRT requests, FleetPy requires information 

on the travel times and travel distances between different OD pairs. Since Aimsun Next simulates 

the traffic on microscopic level, the traffic states and the travel times may change after the 

assignment of vehicle routes. Nevertheless, FleetPy would require estimating the travel times based 

on the data collected from Aimsun Next during the simulation. FleetPy solves this problem by 

considering average travel times on each network edge during a fixed period. 
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Figure 28 Fusion of DRT passengers and freight data required to create clusters of freight requests. 

4.2.5 Space-time Context and Heterogeneous Data Fusion 

4.2.5.1 Introduction 

This section presents the methodology for data standardization, contextualization and fusion based 

on graphs proposed by JSI, which will be used in UC2. Data fusion is a common problem in all large-

scale enterprise systems. Typically, data are collected and stored in silos. Data in each silo can be 

stored in a different structure and format. This makes any holistic processing difficult and error prone. 

The problem can be mitigated by standardizing data format and using explicit contextualization. 

Doing so allows for explicit data fusion by context which streamlines downstream tasks like data 

cleaning and feature engineering.  

In CONDUCTOR, we are designing a mechanism that explicitly encodes contexts in a graph-based 

grid-like structure called a Context Graph. The Context Graph discretizes spacetime in a hierarchical 

grid-like structure that encodes the spatial and temporal relationships between the neighbouring 

contexts. Each datum is explicitly linked to a context creating an implicit similarity metric and allowing 

for higher-order reasoning. This type of fusion supports downstream tasks like automatic feature 

engineering by extracting information from local neighbourhoods and regional graph structure.  

The initial prototype is implemented with Neo4J 13  as our graph database. Neo4J offers a 

standardized query mechanism, simple interactive UI and provides several out-of-the-box graph 

analytics algorithms and graph embeddings. The current context graph architecture is designed to 

enable storing the data included in Table 3 in the Context Graph. 

Table 3 Data included in the Context Graph 

Data Source  Description  

Weather Data  
The weather data and weather forecasts, for the region of modelling on 
UC2. The weather data include 5 years of historical weather data.  The 
weather data presents hourly values for key weather parameters, 

 

 

 

13 https://neo4j.com 
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including: location long/lat, temperature, wind speed, pressure, humidity, 
etc.  

Flights Information  

Flights related data including: time and airport of departure and time and 
airport of arrival. The data include flights information for all the airports 
included in GoOpti transport infrastructure. The data includes both historic 
data since June 2023 and future schedules of up to 1 year in advance. The 
data presents real-time information on current flight plans and future 
schedules.  

Real-Time Road 
Infrastructure Data  

These data include three main categories of information, namely: (1) Traffic 
conditions: Road Weather conditions, Static Traffic Events (such as road 
works), travel times on Motorways, Public Transport Timetable, (2) Traffic 
infrastructure status: Traffic Border delays, Road Cameras, traffic 
counters, traffic forecasts, traffic incidents, Wind (real-time measurements 
on critical sections), (3) Points Of Interests locations: Rest Areas locations, 
EV Charing infrastructure (chargers’ locations), Truck Parkings.  

Real-Time Traffic Events 
(NAP-DARS)  

These data includes dynamic events related to road infrastructure. The 
data are in DATEX II format and includes all status categories related to 
specific road sections. The basic road events will be augmented with data 
from border delays estimation models and data from traffic incidents 
endpoint. The consolidated events data portfolio includes all essential 
categories that influence route planning and/or estimated time travelled on 
specific route segment. Such data will be essential for real-time 
optimization and dynamic routing.  

4.2.5.2 Methodology 

The designed data fusion methodology, called Context Graph, uses explicit contexts to align and 

fuse data in a graph. The Context Graph is designed in two layers: (i) the context layer and (ii) the 

entity layer. Nodes in these layers serve as anchor points that associate each measurement with a 

context and an entity. The measurement themselves are stored on hyper-edges that connect one or 

more contexts to one or more entities. The approach allows for several innovative use cases, such 

as: storing time series in a graph and taking static historic snapshots of the graph.  

The context layer forms a grid-like structure that encodes the spatial, temporal and hierarchical 

relationships between contexts. At a single level of granularity, the context layer forms a 3D grid 

structure that discretizes spacetime. The idea is illustrated in Figure 29.  

 

Figure 29 Context layer - 3D grid structure of discretized spacetime. 
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The formalization of spacetime is presented on Figure 30. The nodes in this structure (e.g. 

CityHour) represent a semantic physical location at a certain point in time. For instance, the blue 

node represents the city of Ljubljana between 2PM and 3PM at a specific date.  

 

Figure 30 Spacetime formalization of context layers. 

Temporal relationships are encoded with ADJ_TIME edges while the spatial relationships are 

encoded with edges labelled ADJ_SPACE. Both the spatial and temporal component form a 

hierarchical structure encoded with edges labelled PARENT_SPACE and PARENT_TIME respectively. 

In the example above, we see that node “Ljubljana 14:00” is a child of “Slovenia 14:00”. Figure 31 

shows the design of the context layer.  
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Figure 31 Context layer design. 

The entity layer consists of master data and transactional data. In the initial prototype it consists of 

nodes like Vehicle, Weather and TravelOrder but also entities like holidays and countries. Later 

it can be extended with semantic structures like ontologies. Figure 32 shows a design of the holiday 

structure that is used in demand prediction of UC2. In our methodology, we do not restrict edges 

from the entity layer to the context layer.  
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Figure 32 Context layer - design of the holiday structure for demand prediction. 

Measurements are stored on a hyperedge that connects a context to one or more entities. For 

instance, a vehicle speed measurement of 90 km/h taken in Vienna at 1PM, on the 1st of December 

2023 is written as (ch:CityHour)-[:MEASUREMENT {speedKmH: 90}]->(v:Vehicle) using 

the Cypher query language. Figure 33 illustrates hourly time-series measurements that are linked to 

temporally adjacent CityHour nodes.  

 

Figure 33 Hyperedge – hourly time-series measurements. 



   

 | V1.0| Final   Page 56 | 67 

4.2.5.3 Technical Implementation 

At the time of writing the Context Graph is implemented as a double-storage architecture. Data is 

first stored into a single table of a Postgres database and then copied into the Neo4J graph via ETL 

job. The design allows for easy changes to the graph structure during the research process. The 

architecture is shown in Figure 34. 

 

Figure 34 Context Graph architecture. 

Each data adapter is implemented as a standalone component. Access to the graph is not provided 

directly but through a Graph API. The API queues queries to prevent deadlocks that can occur in 

Neo4J in case of parallel execution. When data is inserted, new contexts are created on-the-fly. At 

insertion time these are not linked to the grid-like context structure. Instead, they are linked by a 

nightly job executed by the Context Service. Machine learning models are scheduled using a Cron 

Service. They read data from the graph and write predictions back into the graph. A web server with 

an API provides support for user interaction. 

4.2.5.4 Validations 

The first implementation of the Context Graph still contains sparse data. While the context layer is 

already connected, the entity layer mostly contains raw entities with little semantic information. 
Figure 35 shows a sample screenshot of the Context Layer with Flight and CityHour nodes. At 

the time of writing, the graph contains 1.4M Flight nodes and 2.6M CityMonth nodes. 
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Figure 35 Context layer of Flight and City node. 

Figure 36 shows a time series of weather measurements encoded in the Context Graph. In the figure 

below, we can see both the temporal adjacency structure of the spacetime context (defined by edges 
ADJ_TIME_HOUR) and the hierarchical temporal relationship (defined by edges PARENT_DAY). The 

measurements are stored as properties of the edge MEASUREMENT. 

 

Figure 36 Weather mesurement time series in Context Graph. 

During development, we have noticed some pros and cons when compared to a traditional approach 

of encoding data into relational tables. We summarize these in Table 4. 

Table 4 Pros and Cons of Context Graph 

Pros  Cons  

Easier search and traversal of contextually similar 
data. Data with similar context can be identified by 
traversing the graph structure as opposed to 
manual identification of similar context with 
relational databases. For instance, by expanding 
two or three nodes in succession one can identify 
flights that landed on neighbouring airports.  

Increased effort for data modelling and query design. We 
found that arbitrary queries on a graph run slower than 
on traditional databases. Additional effort needs to be 
placed into data modelling, indexing and query design.  
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Availability of out-of-the-box analytical algorithms. 
Graph algorithms like shortest-path and page rank 
can be used to define metrics like similarity and 
centrality. These are not available in relational 
databases.  

Handling concurrency and deadlocking. When 
performing write operations one needs to be careful of 
parallel execution. Because many nodes are linked, 
writing and editing data requires locking which can slow 
down query performance drastically and even lead to 
deadlocks. To mitigate, we placed an API layer on top of 
the graph that ensures that queries are executed 
sequentially.  

In the future, the approach will be rigorously validated before focusing on data enrichment and 

experimentation with automatic feature extraction. The validation will include stress tests and query 

performance evaluation where we see the highest risk. If successful, we will experiment with 

automatic feature extraction with graph analysis algorithms (i.e., connected features) and graph 

embeddings. The primary future directions are semantic data enrichment with ontologies and 

automatic machine learning. 
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5 CONCLUSIONS 

The functionalities designed and developed in this report will be implemented and tested across five 

pilot projects and validated on three different use cases. This deliverable presents the initial version 

of the design, methods and specification for data gathering harmonization and data fusion and 

analysis, as a result of the ongoing Tasks 3.1 and 3.2. 

Moreover, the FIWARE’s smart data models were selected as the basis for harmonisation within 

CONDUCTOR. The use of FIWARE's smart data models for data harmonisation in CONDUCTOR 

is based on their suitability and alignment with the project's goals. As presented in Chapter 3, the 

common data model was used as a framework to design Context Broker that will enable to manage 

the entire lifecycle of context information including updates, queries, registrations and subscriptions. 

Using the Context Broker, one is able to create context elements and manage them through updates 

and queries. In such a way, the data integration and data management are enabled on semantic 

level. 

By adopting common information models for data representation and applying data space design 

with Context Broker and big data architecture deployment, CONDUCTOR can ensure seamless 

integration of applications and enable efficient investigation of CCAM services. The harmonised 

representation of data models will enable easier sharing and exchange of information among 

different components of the project.  

As part of the data fusion tasks of CONDUCTOR, five developments were identified as relevant for 

the design of new traffic management strategies:  

• Characterisation of delivery trips and estimation of delivery demand from mobile network, 

surveys and logistic operation data. 

• Identification of unusual traffic patterns caused by large-scale events. 

• Framework for actionable smartphone-based data analytics. 

• FleetPy—Aimsun coupling specification. 

• Space-time context and heterogeneous data fusion 

The methodology of all of them is presented in detail, as well as the initial implementation steps. The 

developments will be applied and validated in the different UCs of the project, and, as UCs progress, 

they will be refined. 

As mentioned in Section 4, even though each development is framed within one of the 

CONDUCTOR UCs, during the definition and implementation phases, a from-particular-to-general 

approach is being followed, in which each development allows the definition of general 

methodologies that can be extrapolated. So, the same development can potentially be applied to 

more than one UC. 

The report presents the initial version of methods, designs and specifications for final data 

integration. It will be updated, tested and validated on the designed UCs and pilot setups and the 

final designs reported in final reporting. 
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A. APPENDIX 

 

Demo 

site 

Data category Data type Data source Format 

Athens Environmental 

conditions 

Weather Weather Underground 

 

Athens Environmental 

conditions 

Weather National Observatory of 

Athens (NOA) 

Plain text 

Athens, 

Madrid, 

Almelo, 

Slovenia 

Environmental 

conditions 

Weather Visual Crossing JSON, CSV, Excel 

XLSX 

Athens, 

Madrid, 

Almelo, 

Slovenia 

Environmental 

conditions 

Weather OpenWeatherMap JSON, XML, 

HTML 

Athens, 

Madrid, 

Almelo, 

Slovenia 

Environmental 

conditions 

Air pollution OpenWeatherMap JSON 

Athens Demographics Census data Hellenic Statistical 

Authority (ELSTAT) 

Excel XLSX, Plain 

text 

Athens Traffic conditions PT bus/metro 

ridership 

OASA JSON, CSV 

Athens Traffic conditions PT bus/metro 

ridership 

OASA 

 

Athens Traffic conditions Telematics data OASA CSV 

Athens Traffic conditions Telematics data OASA JSON 

Athens Transport supply, 

PT offer 

PT bus routes 

and stations 

OASA (OSY) JSON, CSV, XML, 

TSV 

Athens Transport supply, 

PT offer 

PT metro routes 

and stations 

OASA (STASY) JSON, CSV, XML, 

TSV 

Athens Traffic conditions Road traffic 

(loop detector 

data) 

Region of Attica JSON, CSV 
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Madrid Environment 

conditions 

Weather Spanish Weather Agency 

(Agencia Española de 

Meteorología - AEMET)  

JSON 

Madrid Demographics Census data Spanish National 

Statistical Office (INE)  

CSV, Excel XLSX, 

JSON, TSV 

Madrid Surveys Mobility 

Household 

Survey  

Regional Transport 

Authority/ Community 

of Madrid 

Excel XLSX 

Madrid 

 

Land Use data Spanish National Geographic Information 

Centre (CNIG)  

Madrid Transport supply, 

PT offer 

PT 

infrastructure 

data (stations 

and lines for 

suburban train, 

metro, intercity 

bus) 

Statistics Institute of the Community of 

Madrid  

Madrid Transport supply, 

PT offer 

PT schedules 

data 

Madrid Regional 

Transport Consortium 

(CRTM) 

CSV, GTFS 

Madrid 

 

Mobile 

Network 

Operator 

(MNO) data 

One of the largest 

telecom companies in 

Spain 

Plain text, ZIP 

Madrid Surveys E-commerce 

survey data 

Spanish National 

Statistical Office (INE) 

JSON, CSV, Excel 

XLSX 

Madrid Surveys Contact with 

new 

technologies 

survey data 

Spanish National 

Statistical Office (INE) 

JSON, CSV, Excel 

XLSX 

Madrid Traffic conditions Shared mobility 

vehicle location 

data 

Fluctuo JSON, CSV 

Madrid Road network 

model 

Madrid M-30 

network model 

Aimsun Next ANG 

Madrid Transport demand, 

Generated data 

OD matrices Data Fusion for Travel 

Demand Estimation and 

Characterisation 

CSV 
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Slovenia Environmental 

conditions 

Weather WeatherAPI JSON, XML 

Slovenia Environmental 

conditions 

Weather 

(forecast) 

WeatherAPI JSON, XML 

Slovenia Road network Physical 

infrastructure 

OpenStreetMap (OSM) OSM PBF, 

Shapefile 

Slovenia Road network DARS 

infrastructure 

data 

National Access Point 

(NAP) 

JSON, XML, 

DATEX II (XML) 

Slovenia Traffic conditions DARS 

infrastructure 

data 

Traffic information 

centre (Promet) 

CSV, Excel XLSX 

Slovenia Transport demand Pickup-drop-off 

data 

GoOpti 

 

Slovenia Transport demand Flight 

information 

data 

OAG JSON 

Slovenia Transport demand, 

Generated data 

Traffic demand 

prediction 

DRT Demand Prediction 

 

Almelo Environmental 

conditions 

Weather Royal Netherlands 

Meteorological Institute 

(KNMI)  

netCDF, Plain 

text 

Almelo Environmental 

conditions 

Weather Buienradar JSON 

Almelo Traffic conditions Radar/CCTV 

data 

Municipality of Almelo 

 

Almelo Traffic conditions Roadside 

sensors data 

Municipality of Almelo V-Log 

Almelo Traffic conditions Fleet data Logistic companies 

 

Almelo Transport supply, 

PT offer 

PT routes and 

stops 

Open Mobility Data GTFS, GTFS-RT 

https://www.buienradar.nl/
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B. ABBREVIATIONS AND DEFINITIONS 

AI Artificial Intelligence 

ADAS Advanced Driving Assistance Systems 

API Application Programming Interface 

CCAM Connected, Cooperative and Automated Mobility 

CI/CD Continuous Integration/Continuous Delivery 

CDR Call Detail Record 

DRT Demand-Responsive Transport 

ETL Extract Transform Load 

EV Electric Vehicle 

GPS Global Positioning System 

IDSA International Data Spaces Association 

INE Spanish National Statistics Institute  

ITS Intelligent Transport System 

ML Machine Learning 

MND Mobile Network Data 

MVD Minimum Viable Dataspace 

OD Origin-Destination 

POI Point Of Interest 

SMPC Stochastic Model Predictive Control 

UC Use Case 

 


